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Factors affecting PV output 
1.  Solar irradiance in plane of array (POA) 
      - Horizontal fixed PV collectors:   
         hemispheric downwelling irradiance 
      - Tracking or fixed tilt PV collectors:   
         tilt irradiance, derived from direct and diffuse terms 
2.  Nameplate capacity of PV modules (efficiency of 

modules) – actual performance depends on wind, PV 
cell temperature 

3.  Size of PV plant (number of PV modules) 
4.  Size and efficiency of inverter(s) (convert DC to AC) 
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Ramp rates by energy source 
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Motivation 

Large variations in energy generation may 
cause electric grid instability. 
High variability of solar irradiance limits 
system operators’ acceptance of PV as a 
contributor to base load. 
Progress in integrating PV into the power 
grid requires a better understanding of 
solar irradiance variability. 



Use field measurements to  

Goals	  

1)  characterize spatial and temporal 
variability of total solar irradiance 

2)  evaluate how increasing PV array 
size affects ramp sizes 

3)  examine how temporal and spatial 
variability depend on relative wind 
direction 
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Kalaeloa Airport 



200 m

NREL Oahu measurement site 

17 LI-COR radiometers (1 sec sampling) 
1 rotating shadowband radiometer (3 sec sampling) 

Began operation in March 2010. 



Typical sky conditions 

Very few clear or overcast days 



Typical fluxes and ramps 
Simulated array fluxes, 60 second average
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Simulated array ramps, consecutive 60 second averages
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Average 1- or 3-second samples to 60-seconds. 
Compute ramps as difference between consecutive 
averages. 
Variations as large as 800 Wm-2 (50-75%) observed. 

Q: How much do variations change with location? 



Spatial variability of fluxes 

200 m

Select six sites along a transect covering ~900 m. 
Compute total downward solar irradiance ramps 
for 60-second averages between 900 and 1500 
local time. 
Correlate series of ramps from site DHHL-1 to all 
other sites. 
Average results over 28 broken cloudy days.  



Correlation as a function of distance 
Correlation vs. distance, broken clouds
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Correlation decreases rapidly with distance. 
Significant benefit from spatial averaging should 
occur even below ~500 m (in this case.) 



Simulated PV arrays 

a
b

c
d

a	  a)   100 x 100 m2 ~500 kW 
b)   200 x 200 m2 ~2 MW 
c) 500 x 500 m2 ~12.5 MW 
d) 500 x 1000 m2 or “700 m” ~25 MW 



Simulated array analysis 

Larger arrays experience smaller irradiance 
variations. 
Decrease in ramp magnitudes as a function 
of array size is clearly visible. 

Simulated array fluxes, 60 second average
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Simulated array ramps, consecutive 60 second averages
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Simulated array analysis 

Statistics indicate that larger arrays are subject to 
fewer extreme ramps (e.g., 500 Wm-2 over 60 seconds.) 

Simulated array ramps, broken clouds
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Simulated array ramps, consecutive 60s averages
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Conclusions I 
A high-density radiometer grid has been installed 
on the island of Oahu to examine the variability of 
insolation on high spatial and temporal scales.  
Preliminary results show that the correlation 
between solar fluxes at different sites decreases 
rapidly with distance, leading to clear reductions in 
the magnitude of ramps as PV array size increases. 



Along-wind and cross-wind variability 
 

Method I	  
Select site pairs: 

•  Along wind: 14 pairs, 90-1050 m apart 
•  Cross wind:   7 pairs, 90-680 m apart 

Obtain 1-sec data for 900 to 1500 local time. 
Compute total downward solar irradiance and 
ramps at various time scales. 
Correlate series of ramps from site pairs. 
Average results over 13 broken cloudy days 
with mean winds close to 60°.  



Pair zero-lag correlation results 

Correlation decrease with distance depends on  
•  site alignment 
•  time scale	  

Correlation vs. distance, broken clouds
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Correlation vs. distance, broken clouds
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Correlation vs. distance, broken clouds
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Correlation vs. distance, broken clouds
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Impact on averaged ramps 

Ramp statistics improve more rapidly for 
along-wind sites. 

Ramps for cross-wind sites, 677.8 m separation
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Ramps for cross-wind sites, 452.0 m separation
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Ramps for along-wind sites, 448.6 m separation
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Ramps for along-wind sites, 911.1 m separation
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Cross-wind pairs 



Along-wind pairs 



Observations	  

Cross wind: 
•  Clouds more likely to arrive at same time. 
•  Size of clouds important: must span distance 

between sites. 

Along wind: 
•  Clouds will not arrive at same time. 
•  Size of clouds  less important: same clouds 

will cross all sites. 



Method II	  

Use lagged correlation: 
If clouds pass over sites consecutively,  
•  correlation will have maximum at Δt ≠ 0 
•  Δx/Δt indicates speed of travel 
 
Compute correlation functions from 1-sec irradiance 
data for 900 to 1500 local time. 
Compute implied wind speeds. 
Average results over 13 broken cloudy days with 
mean winds close to 60°.  



Lag of maximum correlation vs. distance 
Lag of max correlation vs. distance, broken clouds
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Along wind: 
   Time interval between maxima linear with distance. 

Same clouds pass over sites with little change. 
Cross wind: 
   No consistent relationship. 



Lag of maximum correlation vs. distance 

Relationships similar for individual days. 
Inferred wind speeds vary. 

Lag of max correlation vs. distance, broken clouds
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Lag of max correlation vs. distance, broken clouds
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Lag of max correlation vs. distance, broken clouds
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Lag of max correlation vs. distance, broken clouds
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Correlation statistics by date 

Inferred wind speeds between 6.5 and 14.5 ms-1. 
Relationships more significant for along-wind sites. 
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Conclusions II 
Relationships between irradiances measured at along- 
and cross-wind station pairs differ: 
•  instantaneous correlation worse for along-wind pairs 
•  temporal averaging increases correlation more 

strongly for along-wind pairs 
Results are consistent with advection of cloud fields 
with wind motion. 
Greater smoothing is obtained when sites are oriented 
along the wind direction. 
 



Next steps 
Evaluate the along-wind derived wind speeds using 
satellite cloud motion vectors.  
Compute correlations between all site pairs to yield 
general statistics for trade Cu conditions. 
Provide more detailed understanding using other 
statistics. 
Compute statistics in terms of normalized irradiance 
(transmittance). 
Seek transfer functions for single radiometer to array 
irradiance conversions. 
 



3D radiative transfer effects	  

Cannot account for:"
1)  Nonzero solar zenith angle (i.e., sun not 

overhead)         
2)  Side scattering        
       

Models typically constrain radiative propagation 
to a vertical column."
No horizontal transport can occur."
"



3D radiative transfer effects: 
Processes	  

From OʼHirok and Gautier, JAS, 2005.	  	  

Can lead to additional scattering or absorption."



3D radiative transfer effects: 
Simulation	  

From OʼHirok and Gautier, JAS, 2005. #



3D radiative transfer effects: 
measurement example	  

Simulated array fluxes, 60 second average
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Excess fluxes of up to 20% here. 
Values 50-60% reported elsewhere (e.g., Dutton et al., 2004). 
Effects greatest for broken clouds – more edges. 

 



3D radiative transfer effects	  

1)  Nonzero solar zenith angle (i.e., sun not 
overhead)         

           displacement of cloud shadows 
           distortion of cloud shadows 
Must be accounted for when deriving fluxes 
from satellite images. 
2)  Side scattering        
           unexpectedly high/low fluxes 
           increased variability 
Important for system design and output. 

Models typically constrain radiative propagation 
to a vertical column."




